First Synthesis of Nonracemic (*R*)-(+)-Myrmicarin 217

Babak Sayah, Nadia Pelloux-Léon, and Yannick Vallée*

LEDSS, Université Joseph Fourier - CNRS, B.P. 53, 38041 Grenoble, France

Received December 6, 1999

Although ants (Formicidae) have been known to produce various monocyclic and bicyclic alkaloids for a long time,¹ it is only recently that tricyclic and oligocyclic alkaloids were found in their poison glands. Such compounds were discovered by Schröder et al. in the secretions of Myrmicaria ants, a genus of african Myrmicinae (M. striata, M. eumenoides, and M. opaciventris), and named myrmicarins (Chart 1). Myrmicarins 217 and 215A-C are simple pyrrolo[2,1,5-cd]indolizidines. In myrmicarin 217 (M217) the substituents on the pyrrole ring are an ethyl and a propyl group.² For M215A,B the propyl group is replaced by a propenyl substituent ((Z) for M215A, (E) for M215B). M215C is probably formed by air oxidation of M217. M430 can be regarded as a dimer of M215.³ It is composed of a complex four-ring system and a pyrroloindolizidine subunit. M663 possesses a trimeric structure, also including a pyrroloindolizidine moiety.⁴ Another compound, M645, has been tentatively assigned a trimeric structure containing two pyrroloindolizidine moieties. All these compounds can be postulated to derive biochemically from two other myrmicarins, M237A,B, which are epimers at position 5, but in which position 8a is known to be (R). Thus, even though the absolute configuration of M215A-C, M217, M430, and M663 are not known, it is probable that stereogenic centers of these pyrroloindolizidines also have a (R)configuration.

Syntheses of M237A,B have been reported,^{5,6} as well as a synthesis of racemic M217.⁷ Here we present the first synthesis of nonracemic (R)-(+)-myrmicarin 217 and of its enantiomer.

We choose L and D glutamic acids to introduce the stereogenic center of (R)-M217 and of its enantiomer. According to a procedure described by Jefford et al.,⁸ the diethyl ester of D-glutamic acid was condensed with tetrahydro-2,5-dimethoxyfuran to give the pyrrole 1 (Scheme 1) which when treated by BBr₃ gave the bicyclic compound 2. A first attempt to reduce simultaneously the two carbonyl groups of this ketoester, using LiAlH₄, failed. A two-step strategy was then envisaged using

- (2) Schröder, F.; Franke, S.; Francke, W.; Baumann, H.; Kaib, M.; Pasteels, J. M.; Daloze, D. Tetrahedron 1996, 52, 13539
- (3) Schröder, F.; Sinnwell, V.; Baumann, H.; Kaib, M. J. Chem. Soc., Chem. Commun. 1996, 2139.
- (4) Schröder, F.; Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W. (4) Schnoder, F., Shinwen, Y., Banhan, H., Rah, M., France, W. Angew. Chem., Int. Ed. Engl. 1997, 36, 77.
 (5) Thanh, G. V.; Célérier, J. P.; Lhommet, G. Tetrahedron Lett.
- 1999, 40, 3713.
- (6) Francke, W.; Schröder, F.; Walter, F.; Sinnwell, V.; Baumann, H.; Kaib, M. *Liebigs Ann.* **1995**, 965. (7) Schröder, F.; Francke, W. *Tetrahedron* **1998**, *54*, 5259.
- (8) Jefford, C. W.; Sienkiewicz, K.; Thornton, S. R. Helv. Chim. Acta **1995**, 78, 1511.

Ft

Myrmicarin 645

Ff

NaBH₃CN in the presence of ZnI₂ to reduce the ketone function into a methylene group⁹ and LiAlH₄ in THF to reduce the ester function into an alcohol. Using these conditions, compound 3 was obtained in 72% yield from 2. At this stage, one further carbon atom was to be introduced. The alcohol 3 was transformed into a sulfonate, which upon treatment with cyanide anions gave nitrile 4. Interestingly, when this nucleophilic substitution was carried out with a triflate group, the yield of this two-step homologation was 55%, while a 90% yield was obtained when the leaving group was a mesylate. Chiral GC analysis of compound 4 showed that it was 97% enantiomerically pure. Hydrolysis of the nitrile group was performed in 90% yield using an aqueous sodium hydroxide solution in methanol. Cyclization of the corresponding acid **5** to the tetrahydro-1*H*-pyrroloindolizine 6 was achieved in poor yield (20%) with phosphorus pentaoxide in toluene.¹⁰ A more efficient process (57% yield) involved the formation of a mixed anhydride followed by ring closure at 40 °C in CH₂Cl₂ in the presence of BF₃·OEt₂. Afterward, a Friedel-Crafts acylation was carried out to introduce an acetyl group on C4 of the pyrrole ring,¹¹ and as expected, due to the carbonyl group at the C2 position, the reaction was totally regioselective. Once more, two carbonyl groups had to be reduced. To our surprise, the substrate 7 underwent polymerization when the previously used conditions

(NaBH₃CN, ZnI₂) were employed. Attempts using the

Ft

Et

Myrmicarin 663

10.1021/jo9918697 CCC: \$19.00 © 2000 American Chemical Society Published on Web 04/06/2000

^{*} To whom correspondence should be addressed. e-mail: Yannick Vallee@ujf-grenoble.fr. (1) Hölldobler, B.; Wilson, E. O. *The Ants*; The Belknap Press of

Harvard University Press: Cambridge, MA, 1990; pp 227-

⁽⁹⁾ Jefford, C. W.; Sienkiewicz, K.; Thornton, S. R. Tetrahedron Lett. 1994 35 4759

⁽¹⁰⁾ Box, S. J.; Corbett, D. F. Tetrahedron Lett. 1981, 22, 3293. (11) Anderson, H. J.; Loader, C. E.; Foster, A. Can. J. Chem. 1980,

^{58. 2527.}

Wolff–Kishner reduction also failed. Finally, it was found that LiAlH₄ efficiently reduced simultaneously the two ketone functions into methylene groups (60% yield). Introduction of a propionyl substituent in the last free position of the pyrrole ring was necessary to complete the synthesis. The best result was obtained with a Vilsmeier-type reagent (prepared by the reaction of *N*,*N*-dimethylpropionamide with POCl₃) which reacted with compound **8** to provide the ketone **9** in reasonable yield.¹² The last step of the synthesis was the reduction of the ketone function by LiAlH₄ (yield: 60%).

As previously noticed by Schröder et al., we observed that M217 is readily oxidized by air into M215C. However, M217 can be preserved from oxidation by storing under a nitrogen atmosphere. The overall yield of (*R*)-M217 from pyrrole **1** was 7.5%. Its ee, determined by chiral gas chromatography, was found to be 98% and its $[\alpha]_D$ was +88 (*c* 1, CH₂Cl₂). Similarly, (*S*)-ent-M217 was obtained from L-glutamic acid.

Experimental Section

All commercial solvents were distilled before use. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under nitrogen atmosphere. Column chromatography purifications were carried out using silica gel (70–230 mesh).¹H NMR and ¹³C NMR were recorded at 200 and 50 MHz, respectively. Peak assignments were determined using DEPT and twodimensional experiments.

(5*R*)-(5,6,7,8⁻Tetrahydroindolizin-5-yl)methanol (3). A solution of 2 (2.03 g, 10 mmol) in dry CH_2Cl_2 (30 mL) was added to a suspension of NaBH₃CN (0.628 g, 15 mmol) and ZnI₂ (10 mmol) in dry CH_2Cl_2 (30 mL). The resulting mixture was refluxed for 150 min and then poured onto crushed ice. After decantation the organic layer was dried over MgSO₄ and concentrated to give the corresponding indolizine which was

characterized by ¹H and ¹³C NMR spectroscopy.¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.26 (t, 3H, J= 6.8 Hz, Me), 1.78 (m, 2H, H-6), 2.19 (m, 2H, H-7), 2.79 (m, 2H, H-8), 4.21 (q, 2H, J= 6.8 Hz, O–CH₂), 4.70 (m, 1H, H-5), 5.84 (m, 1H, H-2), 6.13 (m, 1H, H-1), 6.49 (m, 1H, H-3); ¹³C NMR (50 MHz; CDCl₃) δ 14.1 (Me), 18.8, 23.1, 27.2, 57.2, 61.3, 104.3 (C-2), 108.2 (C-1), 119.2 (C-3), 128.6, 170.8 (CO).

The previous crude ester was then dissolved in dry THF (50 mL) and stirred under N₂ at 0 °C. A suspension of LiAlH₄ (0.608 g) in THF (40 mL) was then added, and the resulting mixture was allowed to warm to room temperature. After stirring for 2 h at room temperature, the solution was cooled to 0 °C and quenched with a saturated aqueous solution of Na₂SO₄. After filtration, the organic layer was dried over MgSO₄ and concentrated. Column chromatography on silica gel (CH2Cl2/AcOEt, 9:1) of the residue yielded 1.09 g (72% from **2**) of **3**. $[\alpha]^{20}_{D} = -33.7$ (*c* 1.00, CH₂Cl₂); IR (NaCl) 3485 (OH) cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.65–2.06 (m, 4H, H-6 and H-7), 2.71 (m, 2H, H-8), 3.77 (m, 3H, CH₂O and OH), 4.08 (m, 1H, H-5), 5.81 (m, 1H, H-2), 6.10 (m, 1H, H-1), 6.70 (m, 1H, H-3); ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 18.7 (C-7), 23.1 (C-8), 25.3 (C-6), 55.2 (CH₂O), 65.1 (C-5), 103.5 (C-2), 107.2 (C-1), 117.1 (C-3), 129.3. MS (EI) 151 (M.⁺). Anal. Calcd for $C_9H_{13}NO$: C, 71.48; H, 8.66; N, 9.26. Found: C, 71.50; H, 8.81; N, 9.11.

(5*R*)-(5,6,7,8-Tetrahydroindolizin-5-yl)acetonitrile (4). A solution of methanesulfonyl chloride (1.53 mL, 20 mmol) was gradually added to a stirred solution of **3** (1.51 g, 10 mmol) in dry dichloromethane (20 mL) and pyridine (5.6 mL) at 0 °C. After 13 h at room temperature, the mixture was poured into ice–water and stirred for an additional 30 min at room temperature. The two-phase system was extracted with CH₂Cl₂. The combined organic layers were washed subsequently with aqueous HCl (1 N), NaHCO₃ (5%), and brine and then dried, filtered, and evaporated to yield quantitatively the corresponding methanesulfonate as a colorless oil. ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.76–2.12 (m, 4H, H-6 and H-7), 2.71 (m, 2H, H-8), 2.82 (s, 3H, CH₃), 4.30 (m, 3H, CH₂O, and H-5), 5.79 (m, 1H, H-2), 6.09 (m, 1H, H-1), 6.64 (m, 1H, H-3).

The obtained crude methanesulfonate and sodium cyanide (1.47 g, 30 mmol) were dissolved in DMF (20 mL). The resulting mixture was heated for 15 h at 90 °C, cooled, and then poured into water (20 mL). Extraction with ether followed by washing, drying (MgSO₄), and evaporation of the solvent gave a residue which was purified by column chromatography on silica gel (CH₂-Cl₂). The nitrile (1.44 g, 90% from **3**) was obtained. $[\alpha]^{20}_{D} = +54.5$ (c 0.20, CH₂Cl₂); IR (NaCl) 2242 (CN), 2843, 2928, 3105 cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.72–2.31 (m, 4H, H-6 and H-7), 2.28 (m, 4H, CH₂CN and H-8), 4.38 (m, 1H, H-5), 5.83 (m, 1H, H-2), 6.16 (m, 1H, H-1), 6.63 (m, 1H, H-3); ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 18.3, 23.1, 24.7, 28.5, 50.6 (C-5), 104.7 (C-2), 108.8 (C-1), 116.8 (C-3), 116.9 (CN), 129.1. MS (EI) 160 (M.+). Anal. Calcd for C₁₀H₁₂N₂: C, 74.96; H, 7.54; N, 17.48. Found: C, 74.66; H, 7.53; N, 17.11. The ee's of isolated nitrile 4 (97%) and of its enantiomer (96%) were determined by gas chromatography on a chiral capillary column (hydrodex b cyclodextrin Type 3 (neutral) 25 m \times 0.25 mm Macherey Nagel A.G.).

(5*R*)-(5,6,7,8-Tetrahydroindolizin-5-yl)acetic Acid (5). Nitrile 4 (1.6 g, 10 mmol) was added to a mixture of aqueous sodium hydroxide (25%, 70 mL) and methanol (200 mL). The solution was stirred under reflux for 6 h, cooled to 0 °C, and then washed twice with CH₂Cl₂. The aqueous layer was acidified to pH 5 with 2 N aqueous hydrochloric acid. Ethyl acetate and brine were then added. The organic layer was separated, dried over MgSO₄, and evaporated to give the desired acid as a yellow oil (1.61 g, 90% yield). $[\alpha]^{20}_D = +12.5$ (*c* 0.2, CH₂Cl₂); IR (NaCl) 3420 (OH) cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.71–2.20 (m, 4H, H-6 and H-7), 2.68–3.09 (m, 4H, CH₂CO and H-8), 4.52 (m, 1H, H-5), 5.80 (m, 1H, H-2), 6.12 (m, 1H, H-1), 6.59 (m, 1H, H-3), 10.05 (bs, 1H, OH); ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 18.5, 23.2, 28.9, 41.1, 50.6 (C-5), 104.7 (C-2), 108.1 (C-1), 117.1 (C-3), 129.2, 176.7 (CO₂H). MS (EI) 179 (M⁺).

(7a*R*)-5,6,7,7a-Tetrahydro-1*H*-pyrrolo[2,1,5-*cd*]indolizin-2-one (6). Triethylamine (6.95 mL, 50 mmol) was added to a solution of compound 5 (1.79 g, 10 mmol) in dry THF (20 mL). The solution was cooled to 0 °C, and ethyl chloroformate (1.92 mL, 20 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 40 min. The solvent was removed, and the crude solid was dissolved in dry ether. Triethylamine hydrochloride was removed by filtration. The filtrate was then evaporated to give the crude mixed anhydride which was characterized by ¹H NMR spectroscopy. ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.37 (t, 3H, J = 7.2 Hz, CH₃), 1.79–2.17 (m, 4H, H-6 and H-7), 2.73–3.12 (m, 4H, H-8 and CH₂CO), 4.29 (q, 2H, J = 7.2 Hz, CH₂O), 4.38 (m, 1H, H-5), 5.82 (m, 1H, H-2), 6.13 (m, 1H), 6.58 (m, 1H, H-3).

The obtained anhydride was dissolved in dry CH₂Cl₂ (20 mL) and added dropwise (40 min) at 40 °C to a solution of BF3·OEt2 (6.33 mL, 50 mmol) in dry CH_2Cl_2 (100 mL). The solution was stirred under reflux for 3 h and then cooled. Water was added, and after decantation and separation, the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and evaporated. The crude residue was purified by chromatography on silica gel (CH₂Cl₂/AcOEt, 9:1) to yield compound **6** (0.917 g, 57%). $[\alpha]^{20}_{D} = +83.8$ (*c* 0.50, CH₂Cl₂); IR (NaCl) 1673 (CO) cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.46-1.60 (m, 1H, H-7), 1.76-2.08 (m, 1H, H-6), 2.14-2.25 (m, 2H, H-6 and H-7), 2.69-3.11 (m, 4H, H-1 and H-5), 4.29 (m, 1H, H-7a), 6.17 (d, 1H, J = 4.1 Hz, H-4), 6.67 (d, 1H, J = 4.1Hz, H-3). $^{13}\mathrm{C}$ NMR (50 MHz; CDCl_3) δ (ppm) 20.3 (C-6), 20.4 (C-5), 27.8 (C-7), 47.0 (C-1), 51.2 (C-7a), 108.3 (C-4), 111.9 (C-3), 127.4, 132.3, 186.3 (CO). MS (EI) 161(M⁺⁺). Anal. Calcd for C₁₀H₁₁NO: C, 74.50; H, 6.87; N, 8.68. Found: C, 74.75; H, 6.81; N, 8.65.

(7aR)-4-Acetyl-5,6,7,7a-tetrahydro-1H-pyrrolo[2,1,5-cd]indolizin-2-one (7). A solution of ketone 6 (500 mg, 3.10 mmol) in CH₂Cl₂ (5 mL) was added to a suspension of aluminum chloride (1.53 g, 11.49 mmol) in dry CH₂Cl₂ (20 mL) and acetyl chloride (0.288 mL, 4.037 mmol). The resulting mixture was refluxed for 2 h, poured onto crushed ice, and stirred until melted. The layers were separated, and the aqueous one was extracted three times with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and evaporated. Column chromatography on silica gel (CH2Cl2/AcOEt, 9:1) of the residue gave pure compound **7** (584 mg, yield: 93%). $[\alpha]^{20}_{D} = +38.1$ (*c* 1, CH₂Cl₂); IR (NaCl) 1665 and 1663 (CO) cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.46–1.65 (m, 1H, H-7), 1.88–2.09 (m, 1H, H-6), 2.20– 2.33 (m, 2H, H-6 and H-7), 2.40 (s, 3H, CH₃), 2.72-2.84 (m, 1H, H-1), 2.87-3.07 (m, 1H, H-5), 3.10-3.18 (m, 1H, H-1), 3.20-3.34 (m, 1H, H-5), 4.25-4.34 (m, 1H, H-7a), 7.00 (s, 1H, H-3). ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 20.5 (C-6), 22.9 (C-5), 27.5 (C-7), 28.1 (CH₃), 47.3 (C-1), 52.2 (C-7a), 110.0 (C-3), 127.1 (C-4), 127.6 (C-3a), 137.1 (C-4a), 188.4 (CO), 194.7 (CH₃CO). MS (EI) 203 (M^{·+}). Anal. Calcd for C₁₂H₁₃NO₂: C, 70.91; H, 6.44; N, 6.89. Found: C, 70.64; H, 6.35; N, 6.80.

(7a*R*)-4-Ethyl-1,2,5,6,7,7a-hexahydro-1*H*-pyrrolo[2,1,5*cd*]indolizine (8). A suspension of LiAlH₄ in dry 1,4-dioxane was added to a stirred solution of compound 7 (500 mg, 2.46 mmol) in the same solvent (20 mL) under N₂ at room temperature. The resulting mixture was heated under reflux for 40 h and then cooled to 0 °C and quenched slowly with a saturated aqueous Na₂SO₄ solution. After filtration the organic layer was dried and evaporated. Column chromatography on silica gel (pentane/CH₂Cl₂, 9:1) of the residue gave **8** (259 mg, yield: 60%). $[\alpha]^{20}{}_D = +82.2$ (c 0.50, CH₂Cl₂). ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.17 (t, 3H, J=7.5 Hz, CH₃), 1.21–1.44 (m, 1H, H-7), 1.68–1.86 (m, 1H, H-6), 1.89–2.17 (m, 3H, H-1, H-6 and H-7), 2.36–2.67 (m, 4H, CH₂Me, H-5 and H-1), 2.70–2.83 (m, 3H, H-5 and 2 H-2), 3.85 (m, 1H, H-7a), 5.68 (s, 1H, H-3). ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 15.6 (CH₃), 19.6 (CH₂), 20.1 (C-5), 22.3 (C-6), 25.2 (C-2), 29.7 (C-7), 37.2 (C-1), 55.2 (C-7a), 98.7 (C-3), 118.6 (C-2a), 122.7 (C-4), 130.8 (C-4a). MS (EI) 175 (M⁺). Anal. Calcd for Cl₂H₁₇N: C, 82.23; H, 9.77; N, 7.99. Found: C, 82.12; H, 9.44; N, 7.68.

(4aR)-1-(1-Ethyl-3,4,4a,5,6,7-hexahydropyrrolo[2,1,5-cd]indolizin-2-yl)propanone (9). A solution of 8 (200 mg, 1.14 mmol) in dry toluene (10 mL) was added at 90 °C to a mixture of N,N-dimethylpropionamide (0.136 mL, 1.254 mmol) and $POCl_3$ (0.117 mL, 1.254 mmol) in toluene (5 mL). The resulting mixture was stirred for 3 h. Sodium acetate (3 g) in water (10 mL) was then added at 90 °C, and the reaction was carried on for 15 min. The solution was cooled to room temperature, diluted with water, and extracted with CH₂Cl₂. The organic layer was dried (MgSO₄) and evaporated. The residue was purified by chromatography on silica gel (CH_2Cl_2) to give compound 9 (179 mg, 68% yield). $[\alpha]^{20}_{D} = +64.8$ (*c* 0.50, CH₂Cl₂). IR (NaCl) 1648 (CO) cm⁻¹; ¹H NMR (200 MHz; CDCl₃) δ (ppm) 1.10–1.17 (m, 6H, 2 CH₃), 1.25-1.38 (m, 1H, H-5), 1.70-1.77 (m, 1H, H-6), 2.02-2.18 (m, 3H, H-4, H-5 and H-6), 2.45-2.73 (m, 7H, 2 H-7, H-4 and 2 CH₂), 2.90-3.05 (m, 2H, H-3) 3.80-3.90 (m, 1H, H-4a). ¹³C NMR (50 MHz; CDCl₃) δ (ppm) 8.5 (CH₃), 15.2 (CH₃), 19.1, 19.4 (C-7), 22.1 (C-6), 28.1 (C-2), 29.4 (C-5), 34.0 (CH₂), 35.9 (C-4), 55.9 (C-4a), 115.9, 121.0, 124.7, 137.7, 196.3 (CO). MS (EI) 231 (M·+). Anal. Calcd for C₁₅H₂₁NO: C, 77.88; H, 9.15; N, 6.05. Found: C, 77.62; H, 9.19; N, 6.05.

(4a*R*)-1-Ethyl-3,4,4a,5,6,7-hexahydro-2-propylpyrrolo-[2,1,5-*cd*]indolizine M217. Ketone 9 (100 mg, 0.433 mmol) was reduced with LiAlH₄ in refluxing dioxane for 3 h. The crude product was purified by column chromatography (silica gel) to yield 56 mg of M217 (60%). The obtained ¹H and ¹³C NMR spectra were in agreement with ref 2. $[\alpha]^{20}_{D} = +88$ (*c* 1, CH₂-Cl₂).

(4a.S)-1-Ethyl-3,4,4a,5,6,7-hexahydro-2-propylpyrrolo-[2,1,5-*cd***]indolizine.** The enantiomer of M217 was obtained by the same series of reaction starting with L-glutamic acid.

The ee's of isolated M217 (97.9%) and of its enantiomer (88.5%) were determined by gas chromatography with a chiral capillary column (hydrodex b cyclodextrin Type 3 (neutral) 25 m $\times 0.25$ mm Macherey Nagel A.G.)

Supporting Information Available: Copies of ¹H NMR spectra of compounds **3–9** and M217. Chiral GC chromatograms of (R)-M217 and (S)-*ent*-M217. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9918697